MEMORANDUM July 1, 1975 To: Gerry Calkins From: Grover Scott Jeane II Subject: Woodland STP I visited the Woodland STP in response to your request for information concerning the characteristics of the solids entering this plant. In conjunction with the influent sampling, composite effluent samples were obtained for efficiency analysis. The sampling took place over the 27 and 28th of May. The influent composite was over a 29-hour period while the effluent was for a 5-hour period. A pinkish-colored influent was noted at 2 p.m. the 28th of May and a grab sample was collected. The plants total flow was measured at 155,000 gallons per day from their Sparling totalizer. The field and laboratory results are discussed below. #### Solids Analysis: The composite influent and the grab samples were very similar in solids characteristics. The influent is 2 to 3 times higher in total solids, total non-volatile solids and total suspended solids than several regional STP's of similar size. Yet the solids profile of the Woodland STP is very similar to that of the Vancouver westside plant. | | STP's | | | | | |---|--------------------------------------|---|-----------------------|------------------------|-----------------------| | Solids (mg/l) | Woodland | Million Program (See Million Politics on American Agency | Vancouver
Westside | Wilkeson | Carbonado | | Total Solids Total Non Vol. Solids Total Sus. Solids Total Sus. Non Vol. Solids | Composite
643
221
286
75 | Grab
500
231
194
28 | 741
335
197 | 243
170
60
14 | 202
120
33
4 | The Woodland STP is not supposed to be receiving any industrial effluents but Woodland's effluent compares closely with Vancouver's STP which receives heavy industrial discharges. Woodland's influent is about 10 to 15% higher in total Page 2 Re: Woodland STP volatile solids than the other plants. Interpretation of the solids analysis does not support the theory of the presence of a coloidal clay or a very fine inorganic suspension. The unknown solids are of a volatile nature. #### Discharge Values: In conjunction with the solids sampling, composite samples were collected and analyzed to determine if the plant was meeting the discharge conditions of their permit. Permit values and other important parameters are presented below. | | Permit Conditions | Survey Observations | |--|---|--| | BOD
TSS ()
NO3-H | 30 mg/L 120 #/day
30 mg/L 120 #/day | 10 mg/L, 13.35 lbs/day
3 mg/L, 4.01 lbs/day
7.68 mg/L, 10.25 lbs/day | | NH3-H | due has buil dan dan dan dan | 18.0 mg/L, 24.0 lbs/day | | T-PO ₄ -P
pH
Total Coliform
Fecal Coliform
Flow | 6.5 to 8.5 S.U.
200 col/100 ml
0.48 MGD | 11.5 mg/L, 15.35 lbs/day
7.2
600 col/100 ml
10 col/100 ml
0.16 MGD | The plant effluent meets the permit special conditions. Plant equipment and grounds are well maintained. Laboratory Technique Evaluations: Samples were split and analyzed by both the operator and DOE's Laboratory. The results are as follows: | | Ir | nfluent | Eff | luent | |--------------------|----------|------------|-------|----------| | | DOE - | - Woodland | DOE - | Woodland | | BOD | mg/L * | 580 | 10 | 67 | | Composite - T.S.S. | mg/L 286 | 464 | 3 | 11.5 | | Grab - T.S.S. | mg/L 194 | 190 | | | ^{* =} insufficient sample volume The operator's laboratory results agree fairly well with our results. GSJ:ee # STP Survey Report Form # Efficiency Study | City Woodland | | | | | | |-----------------------------|-------------------|--|--|--|--------| | Receiving Water | Lewis River | Perennial | X Intermi | Capacity
ttent | | | Date6-28-75 Sur | | | | | | | Comp. Sampling Fre | quency See cover | lettersampling A | lequot | | | | Weather Conditions | | | | | | | pass of raw sewage | ?Yes | No/Frequency | of bypass | | | | Reason for bypass_ | | | | | | | Was DOE Notified?_ | Dischar | ge - Intermitte | nt(| Continuous | | | | | Operation | | | , | | Total flow 155,752 | gal/day | _ How measured | Sparling o | conical propelle | r | | Maximum flow | | Time of Max. | | | | | Minimum flow | | | | | | | Pre Cl ₂ | | | | | /day | | | n; ol | a Damidhii | | | | | | | d Results | | | | | | | uent | | Effluent | | | Determinations | Max. Min. | Mean Med | ian Max. | Min. Mean | Median | | Temp °C
pH (Units) | | | | Street against concession in the special and a | | | Conductivity | | Company to the Company | | | | | (µmhos/cm²)
Settleable | | | | | | | Solids (mls/1) | | | | | | | | Laboratory Res | sults on Compos | ites | | | | | Influent | Effluent | % Re | duction | | | Laboratory No. | Grab | 24-hr. composi | te | | | | 5-Day BOD ppm | 350 est. | 10 | and the same of th | 97 | | | COD ppm
F.S. ppm | <u>476</u>
500 | <u>51</u>
 | dongonidada | ************************************** | | | T.N.V.S. ppm | 231 | 184 | | | | | r.s.s. ppm
v.v.s.s. ppm | <u>194</u>
28 | 3 0 | - Applications | 98 | | | PH (Units) | | State Section Control of the | @@ntgs#amme | March of Antaron March Angelon (1984) | | | Conductivity
(µmhos/cm²) | 600 | 490 | | | | | Turbidity (JTU's) | 2 A American | | | | | # Laboratory Bacteriological Results | Lab No. | Sampling
Time | Co
Total | lonies/100
Fecal | ml (MF)
Fecal | Cl ₂ Residu | al | |--|--------------------|----------------------|---------------------|--|--------------------------------|---------------------------| | and the second section of the second section of the second section of the second section of the second section section section sections. | | Coliform | Coliform | Strep | 15 sec. | 3 min. | | 75-2062 | 1430 | 600 | <10 | | 0.3 | 0.4 | Additional | Laboratory | Results | | | | NO3-N P | pm - | | | | | | | NO2-N P | pm - | | | | | | | NH3-N P | pm -
dahl-N ppm | | | | | | | 0-P04-P | ppm - | | See r | eport | | | | T-PO4-P | ppm - | | | | | | | Operator's | s Name | Mell Long | | Phone No. | . 225-7007 | Type of (| Collection S | System | | | | Combined | d Sepai | Type of C | | Estimate flo | ow contribute
and water (ir | ed by sur-
nfiltratio | | _ Combined | l Sepai | | | Estimate flo | ow contribute
and water (ir | ed by sur-
nfiltration | | _ Combined | d Sepai | rate Bot | | Estimate flo | ınd water (ir | nfiltratio | | | | rate Bot | ch
eading Infor | Estimate flo | and water (ir | nfiltratio | | Annual ave | erage daily | Plant Lo | eading Informad) | Estimate flot face or groumation Peak flow ra | and water (ir | nfiltratio
MGD | | Annual ave | erage daily | rate Bot
Plant Lo | ading Informgd) | Estimate flo | ind water (ir | MGD MGD |